Structural basis of transcription: -Amanitin–RNA polymerase II cocrystal at 2.8 Å resolution
نویسندگان
چکیده
T structure of 10-subunit 0.5-MDa yeast RNA polymerase II (pol II), recently determined at 2.8 Å resolution, reveals the architecture and key functional elements of the enzyme (1). The two largest subunits, Rpb1 and Rpb2, lie at the center, on either side of a nucleic acid-binding cleft, with the many smaller subunits arrayed around the outside. Rpb1 and Rpb2 interact extensively in the region of the active site and also through a domain of Rpb1 that lies on the Rpb2 side of the cleft, connected to the body of Rpb1 by an -helix that bridges across the cleft. Proof that nucleic acids bind in the channel comes from the molecular replacement solution of a transcribing pol II complex at 3.3 Å resolution (2). This structure shows the template DNA unwinding some three residues before the active site, followed by nine base pairs of DNA–RNA hybrid. Adjacent regions of Rpb1 and Rpb2 form a highly complementary surface, resulting in extensive DNA–RNA hybrid–protein interaction. The ‘‘bridge’’ helix seems to play an important role, binding to both the second and third unpaired DNA bases and also to the coding base, paired with the first residue of the RNA. Comparison of the pol II structure in different crystal forms shows a division of the enzyme in several mobile elements that my facilitate DNA and RNA movement during transcription. Comparison of the pol II structure with that of the related bacterial RNA polymerase (3) suggests mobility of the bridge helix as well (2). The pol II structures open the way to many lines of investigation. Structures of cocrystals of pol II with interacting molecules can be solved, the full power of site-directed mutagenesis can be brought to bear on the transcription mechanism, and so forth. Here we report the structure of a cocrystal of pol II with the most potent and specific known inhibitor of the enzyme, -amanitin. The active principle of the ‘‘death cap’’ mushroom, -amanitin blocks both transcription initiation and elongation (4–6). The structure of the cocrystal suggests that -amanitin interferes with a protein conformational change underlying the transcription mechanism.
منابع مشابه
Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.
Structures of a 10-subunit yeast RNA polymerase II have been derived from two crystal forms at 2.8 and 3.1 angstrom resolution. Comparison of the structures reveals a division of the polymerase into four mobile modules, including a clamp, shown previously to swing over the active center. In the 2.8 angstrom structure, the clamp is in an open state, allowing entry of straight promoter DNA for th...
متن کاملGiardia lamblia RNA polymerase II: amanitin-resistant transcription.
Giardia lamblia is an early branching eukaryote, and although distinctly eukaryotic in its cell and molecular biology, transcription and translation in G. lamblia demonstrate important differences from these processes in higher eukaryotes. The cyclic octapeptide amanitin is a relatively selective inhibitor of eukaryotic RNA polymerase II (RNAP II) and is commonly used to study RNAP II transcrip...
متن کاملExtragenic Accumulation of RNA Polymerase II Enhances Transcription by RNA Polymerase III
Recent genomic data indicate that RNA polymerase II (Pol II) function extends beyond conventional transcription of primarily protein-coding genes. Among the five snRNAs required for pre-mRNA splicing, only the U6 snRNA is synthesized by RNA polymerase III (Pol III). Here we address the question of how Pol II coordinates the expression of spliceosome components, including U6. We used chromatin i...
متن کاملRole of DNA-dependent RNA polymerases II and III in transcription of the adenovirus genome late in productive infection.
DNA-dependent RNA polymerases I, II, and III were isolated and partially purified from KB (human) cells 18 hr after infection with adenovirus 2. As reported previously for the enzymes from other animal cells, RNA polymerase II was completely sensitive to low concentrations of alpha-amanitin (50% inhibition at 0.02 mug/ml), RNA polymerase III was completely sensitive to high concentrations of al...
متن کاملDissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues
The trigger loop (TL) of RNA polymerase II (Pol II) is a conserved structural motif that is crucial for Pol II catalytic activity and transcriptional fidelity. The TL remains in an inactive open conformation when the mismatched substrate is bound. In contrast, TL switches from an inactive open state to a closed active state to facilitate nucleotide addition upon the binding of the cognate subst...
متن کامل